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Abstract
      Cracks propagations, fragmentations and large deformation of engineering solid 
materials are characterized by a continuous change in the geometry of the domain 
under consideration. Conventional methods such as finite element and finite difference 
method are usually used to analyze these types of problems with difficulties. These 
methods use meshes to model and analyze the material behavior. The analysis of large 
deformation and crack propagation of engineering problems by these methods may 
require the continuous remeshing of the domain in order to avoid the break down of the 
calculation due to excessive mesh distortion. In the analysis when even only a few 
meshes are needed, mesh generation can consume more time and effort compared to the 
construction and solution of the discrete set of equations. In this paper the essential 
boundary condition with the enforcing of penalty method is modified. A more recently 
introduced mesh-free method which provides an attractive solution to this kind of 
problems is presented. In this method, the domain is represented by a set of arbitrary 
distributed nodes and there is no need to use meshes or elements for field variable 
interpolation. The nodes remain constant while the geometry of the domain is changing, 
therefore saving time and computational effort in analyzing process. A few examples of 
application of the method in predicting the behavior of materials with large 
deformations are presented and its suitability is highlighted.
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1- Introduction
The computational problems in engineering branch grow ever more interceding. 

Like crack propagation, fragmentation and large deformation in the simulation of 
manufacturing processes for solid and liquids. We need to model the large deformation 
and crack propagation properly with arbitrary paths. The analysis of these problems 
with conventional computational methods such as finite element and finite difference 
are not well proper. The analysis of large deformation problems by the method based on 



meshes may require the remeshing of the domain in each step the evolution. This 
strategy is proper for method based on meshes but introduce numerous difficulties. The 
continuous remeshing of the domain in each step of the evolution leads to degradation 
of accuracy and complexity in the computer program and the time-consuming mesh 
generation. Over the past three decades, many researchers have come to realize that so-
called meshless methods can be developed that eliminate the meshes and their 
difficulties. Then the meshless methods there are only nodes. Although must be taken to 
meshes in at least parts of the some of meshless methods, often be treated without 
remeshing in shap function with minor costs in accuracy degradation. In this manner 
some of meshless methods basically no require meshes in background, such as Finite 
Point Method (FPM). Therefore the using of methods based on meshes to solve large 
classes of problems or three dimensional problems are very awkward. About thirty 
years ago until recently the many researchers have been developed type of meshless 
methods. T. P. Fries and H. G. Matthies [1] published a special issue on meshless in 
July 2004 that is classification and overview of meshfree methods. They introduced 
type of meshless methods such as Smooth Particle Hydrodynamics (SPH), Diffuse 
Element Method (DEM), Element Free Galerkin (EFG), Least Squares Meshfree 
Method (LSMM), Meshfree Local Petrov Galerkin (MLPG), Local Boundary Integral 
Equation (LBIE), Partition of Unity Methods (PUM), hp clouds, Natural Element 
Method (NEM), Meshless Finite Element Method (MFEM), Reproducing Kernel 
Element Method (RKEM). In this paper EFG method is used and for enforcing the 
essential boundary conditions is applied modified penalty method. The example is 
shown good results and calculated time is less than FDM1. 

2- Element Free Galerkin Method (EFG)
Belytschko et al. [2] modified the constructing shape function for Diffuse Element 

Method (DEM). They named it the Element Free Galerkin (EFG) method. The Moving 
Least Squares (MLS) approximation procedure related to construct shape function for 
EFG method. The MLS approximation uh(x) is defined in the form of:

uh(x)=∑j=1
m pj(x)aj(x)≡pT(x)a(x)                                                   (1)  

where pj(x) are monomials of basis function in the space coordinates

xT=[x,y,z]                                                                                         (2)

In 1D space is provided by:

PT(x)=[1,x,x2, … ,xm]                        (3)

and in 2D space:

PT(x,y)=[1,x,y,xy,x2,y2, … ,xm,ym] (4)

and in 3D space, we have:

PT(x,y,z )=[1,x,y,z,xy,yz,zx,x2,y2,z2, … ,xm,ym,zm]                          (5)
where m is the number of terms of monomials (polynomial basis).

1 . Finite Difference Method.



a(x) is a vector of coefficients and is obtained at any point x by minimizing J. 
 
J=∑i=1

m w(x-xI)[pT(xI)a(x)-uI]2 (6) 

Where J is a function of weighted residual and constructed using the approximated 
values of the field function. The stationary of J with a(x):

A(x)a(x)=B(x)u

(7)

or

a(x)=A-1 (x)B(x)u (8)

where 

A(x)=∑I=1
n wI(x)pT(xI)p(xI)                                             (9) 

B(x)=[w1(x)p(x1) , w2(x)p(x2) , … , wn(x)p(xn)]               (10) 

u=[u1, u2, … , un]                                                              (11)

Substituting the equation (8) into (1) leads to:

uh(x)=∑I=1
n∑j=1

m pj(x)(A-1(x)B(x))jIuI (12)

or

uh(x)=∑I=1
n ΦI(x) uI (13)

where the MLS shape function ΦI(x) is defined by:

ΦI(x)= ∑j=1
m pj(x)(A-1(x)B(x))jI≡pT(x)A-1(x)B(x) (14)

The partial derivative of  ΦI(x) can be obtained as follows:

ΦI,i= ∑j=1
m  pj,i(A-1B)jI+pjA-1(B,i-A,iA-1B)jI                                 (15)

The weight function wI (x) is positive and an important coefficient. In this paper it is:

1-6*s2+8*s3-3*s4 for         : dI<=r
wI(x)=  (16)

 0                                  for        : dI>r

where       s=dI/r          ,         d I =||x-xI||     ,       r=influence domain.

The weight function is large for xI close to x and is small for xI far from x and is zero 
for out of influence domain.



3- Displacement, Strain and Stress
The displacement of any point in the domain is obtain ed by:

uh(x)=Φ(x)u   (17)

where Φ(x) is shape function and it is defined by:

Φ(x)= pT(x)A-1(x)B(x)                                                                    (18)

The details of (18) were shown the previous section. ua is displacement vector of nodes 
in the influence domain x .
The displacement vector of nodes is obtained from equilibrium equation. The 
equilibrium equation can be obtained from variational principles. The functional of the 
total potential energy of a material is given by:

Π=Πb+ Πf + Πp         (19)

Where Πb is the elastic strain energy of block. Πf is the potential energy of the body 
force fe and Πp is the potential energy of the concentrated force p. They are given by:

Πb=∑e te∫∫Ωe½εTDb ε dxdy=½∑eub
T(te ∫∫Ωe Bb

T DbBbdxdy)ub  (20)

Πf=-∑e ∫∫ΩeuTf e dxdy=-∑eub
T(∫∫Ωe NT f e dxdy) (21)  

 
Πp=-∑m uTpm =-∑mub

T(NT pm)            (22)   

We can obtain equilibrium equation from the stationary of functional Π in (19). The 
equilibrium equation of solid materials is given by:

KU=P  (23)

Where 

K=∑ete ∫∫Ωe Bb
T DbBbdxdy (24) 

P=∑e∫∫Ωe NT f e dxdy +∑m NTpm (25) 
 
U=[u1,v1,u2,v2,…,un,vn]T (26)

Where te is the thickness of the material e, n is the total number of nodes in the problem 
domain, U is displacement vector related to total number of nodes in the problem 
domain. The displacement of any point into problem domain is obtained by:

u=N.ub (27) 

where

Ф1(x) , 0 , Ф2(x) , 0 , … , Фn(x) , 0
N=                                                                                                  (28) 



          0 , Ф1(x) , 0 , Ф2(x) , 0 , … , Фn(x) 

and ub is the displacement vector of influence domain x. The Strain and Stress at any 
point x are given by:

ε=Bbub (29)

σ=DbBbub  (30) 
 
where

Ф1,x(x)   , 0 ,   Ф2,x(x) ,   0 , … ,     Фn,x(x) ,   0
Bb= 0   ,   Ф1,y(x)   ,  0   ,  Ф2,y(x)  , 0 ,…,     Фn,y(x)                                 (31)

Ф1,y(x) ,Ф1,x(x)   ,  … ,         Фn,y(x) , Фn,x(x)

and 

           1       υ          0
Db=(E/(1-υ2))       υ       1          0            for plain stress state                        (32)
                             0       0      (1-υ)/2

                                    1-υ υ         0
Db=(E/(1-2υ)(1+υ))      υ      1-υ   0  for plain strain state (33)            

                           0         0     (1-2 υ)/2  
and

ε=[εx,εy,εxy]T  (34)

σ=[σx, σy, σxy]T (35)

4- The equilibrium equation with enforcing the essential boundary condition
The nodal value of the interpolation function uh(x) in element free Galerkin method 

is not equal to the nodal value of the function u(x). This is caused shape function of 
EFG method is not equal to kronecker delta. Namely:

ΦI(xJ) ≠ δIJ    (36)

Thus should be imposed the essential boundary condition. A simple and efficient way 
for imposing essential boundary condition is penalty method. The essential boundary 
condition is:

u=û        on       Γu (37)

where û is the prescribed displacement on boundary Γu. The equation is obtained from 
weak form Galerkin with enforcing the essential boundary condition and using penalty 
method as [3]:

∫Ωδ(Lu)Tc(Lu)dΩ - ∫ΩδuT. b dΩ - ∫ΓtδuT . t dΓ - δ∫Γu(.5)(u-ū)T.α.( u-ū)dΓ=0  (38)



Applying mathematical calculation on (38), the final equilibrium equation is:
[K+Kα] U=P+Pα                                                                                                 (39)

Where Kα and Pα are obtained for the essential boundary condition using penalty 
method, as:

Kα=α∫ΓuNTN dΓ                                            (40)

Pα=α∫ΓuNTū dΓ       (41)

Where α is penalty factor. Ideally it is true to use infinite penalty factor. But if it is taken 
as infinite or too large, the numerical problems will be encountered. Thus the penalty
factor is a number that the constraints be properly enforced. Usually it is equal to 103E
to 1013E and E is elasticity modulus.

5- The Modified Penalty Method
The enforcing of penalty method is necessary to satisfy essential boundary condition.

The essential boundary condition is:

u = ū on Γu                                                                                                      (42)

Kα and Pα in equation (39) properly should be determined. Liu [3] in their book (chapter 
6) has said: "integration is performed along the essential boundary, and hence 
matrix Kα will have entries only for the nodes near the essential boundary Γu, 
which are covered by the support domains of all the quadrature points on Γu."
If this statement is applied the results is not obtained exactly. Hughes [4] described the 
penalty method and obtained equilibrium equation with enforcing the essential 
boundary condition. KU=P is equilibrium equation without enforcing the essential 
boundary condition, and the essential boundary condition is:

dQ = g                                                                                       (43)

With enforcing the essential boundary condition is obtained Eq. (44):

(K+k1Q1Q
T)U =P+kg1Q                                              (44)

Where

1Q
T= [0 0 … 0 1 0 … 0]                                            (45)

and k is penalty factor. Thus it is necessary to apply the penalty method and rewriting
Kα in the form of:

Kα=α ∑I=1
n NI

TNI    (46)

Where NI is obtained only for the nodes of boundary and is given the displacement, n is 
number of nodes of boundary with known displacement.



6- Numerical Example:
In this example a cantilever beam is studied (Fig. (1)). The displacement is calculated. 
The displacement between exact solution and present method is compared. The exact 
solution is given in Timoshenko and Goodier [5]:
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The problem is solved for the plane strain case where p=-1000N, E=2e7Pa, D=4m, 
L=8m, ν=.3 and weight function is selected Cubicspline, number of quadrature point in 
each cell=6*6, number nodes=60(12*5), number cell=44(11*4), influence 
domain=1.955, penalty parameter=1e5. To compare are prepared exact solution with 
present solution for all nodes Figs. (2) to (4). The displacements of nodes along y=3 and 
y=4 coincide with the nodes along y=1 and y=0 respectively. 

Fig (1): cantilever beam with force P distributed
in a parabolic form at the end of the beam
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Fig (2): Displacement of the cantilever beam along y=0
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Fig (3): Displacement of the cantilever beam along y=1
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Fig (4): Displacement of the cantilever beam along y=2

7- Conclusion
The meshless methods are suitable and easy with respect to methods based on 

meshes. The based on meshes method for large deformations problems leads in 
reduction of speed and degradation of accuracy and complexity of the calculations. In 
this paper is used the Element Free Galerkin method product very accurate displacement
results. This method can be used homogeneous and nonhomogeneous problems. The 
modified penalty method is used enforcing the essential boundary condition that is 
invention of this paper and obtained good results. To using the element free Galerkin 
method for discontinuous problems in the elastic state and the elsto-plastic state is used. 
The compare of exact solution and EFG method in example is shown efficiency and 
exact of EFG method.
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